Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Chem Biol Interact ; 386: 110750, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37839513

RESUMO

Hydroxychloroquine (HCQ) is a unique class of medications that has been widely utilized for the treatment of cancer. HCQ plays a dichotomous role by inhibiting autophagy induced by the tumor microenvironment (TME). Preclinical studies support the use of HCQ for anti-cancer therapy, especially in combination with conventional anti-cancer treatments since they sensitize tumor cells to drugs, potentiating the therapeutic activity. However, clinical evidence has suggested poor outcomes for HCQ due to various obstacles, including non-specific distribution, low aqueous solubility and low bioavailability at target sites, transport across tissue barriers, and retinal toxicity. These issues are addressable via the integration of HCQ with nanotechnology to produce HCQ-conjugated nanomedicines. This review aims to discuss the pharmacodynamic, pharmacokinetic and antitumor properties of HCQ. Furthermore, the antitumor performance of the nanoformulated HCQ is also reviewed thoroughly, aiming to serve as a guide for the HCQ-based enhanced treatment of cancers. The nanoencapsulation or nanoconjugation of HCQ with nanoassemblies appears to be a promising method for reducing the toxicity and improving the antitumor efficacy of HCQ.


Assuntos
Hidroxicloroquina , Neoplasias , Humanos , Hidroxicloroquina/farmacologia , Hidroxicloroquina/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Nanotecnologia , Microambiente Tumoral
2.
Crit Rev Biotechnol ; : 1-18, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36788704

RESUMO

Plastic biodegradation has emerged as a sustainable approach and green alternative in handling the ever-increasing accumulation of plastic wastes in the environment. The complete biodegradation of polyethylene terephthalate is one of the most recent breakthroughs in the field of plastic biodegradation. Despite the success, the effective and complete biodegradation of a wide variety of plastics is still far from the practical implementation, and an on-going effort has been mainly devoted to the exploration of novel microorganisms and enzymes for plastic biodegradation. However, alternative strategies which enhance the existing biodegradation process should not be neglected in the continuous advancement of this field. Thus, this review highlights various strategies which have shown to improve the biodegradation of plastics, which include the pretreatment of plastics using UV irradiation, thermal, or chemical treatments to increase the susceptibility of plastics toward microbial action. Alternative pretreatment strategies are also suggested and compared with the existing techniques. Besides, the effects of additives such as pro-oxidants, natural polymers, and surfactants on plastic biodegradation are discussed. In addition, considerations governing the biodegradation performance, such as the formulation of biodegradation medium, cell-free biocatalysis, and physico-chemical properties of plastics, are addressed. Lastly, the challenges and future prospects for the advancement of plastic biodegradation are also highlighted.

3.
Int J Biol Macromol ; 232: 123461, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-36720328

RESUMO

Formulation of water-in-oil (W/O) Pickering emulsion (PE) for food applications has been largely restricted by the limited choices of food-grade Pickering emulsifiers. In this study, composite microgels made of chitosan and carrageenan were explored as a dual (pH and thermal) stimuli-responsive Pickering emulsifier for the stabilization of W/O PE. The chitosan-carrageenan (CS-CRG) composite microgels not only exhibited pH- and thermo-responsiveness, but also displayed enhanced lipophilicity as compared to the discrete polymers. The stability of the CS-CRG-stabilized W/O PE system (CS-CRG PE) was governed by CS:CRG mass ratio and oil fractions used. The CS-CRG PE remained stable at acidic pH and at temperatures below 40 °C. The instability of CS-CRG composite microgels at alkaline pH and at temperatures above 40 °C rendered the demulsification of CS-CRG PE. This stimuli-responsive W/O PE could unlock new opportunities for the development of stimuli-responsive W/O PE using food-grade materials.


Assuntos
Quitosana , Microgéis , Emulsões , Carragenina , Emulsificantes , Água , Concentração de Íons de Hidrogênio
4.
Biochim Biophys Acta Rev Cancer ; 1877(5): 188779, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35977690

RESUMO

Despite the emergence of various cancer treatments, such as surgery, chemotherapy, radiotherapy, and immunotherapy, their use remains restricted owing to their limited tumor elimination efficacy and side effects. The use of nanoassemblies as delivery systems in nanomedicine for tumor diagnosis and therapy is flourishing. These nanoassemblies can be designed to have various shapes, sizes, and surface charges to meet the requirements of different applications. It is crucial for nanoassemblies to have enhanced delivery of payloads while inducing minimal to no toxicity to healthy tissues. In this review, stimuli-responsive nanoassemblies capable of combating the tumor microenvironment (TME) are discussed. First, various TME characteristics, such as hypoxia, oxidoreduction, adenosine triphosphate (ATP) elevation, and acidic TME, are described. Subsequently, the unique characteristics of the vascular and stromal TME are differentiated, and multiple barriers that have to be overcome are discussed. Furthermore, strategies to overcome these barriers for successful drug delivery to the targeted site are reviewed and summarized. In conclusion, the possible challenges and prospects of using these nanoassemblies for tumor-targeted delivery are discussed. This review aims at inspiring researchers to develop stimuli-responsive nanoassemblies for tumor-targeted delivery for clinical applications.


Assuntos
Nanopartículas , Neoplasias , Trifosfato de Adenosina , Sistemas de Liberação de Medicamentos , Humanos , Nanomedicina , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Microambiente Tumoral
5.
Comput Struct Biotechnol J ; 20: 2909-2920, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35765650

RESUMO

Optimization of the fermentation process for recombinant protein production (RPP) is often resource-intensive. Machine learning (ML) approaches are helpful in minimizing the experimentations and find vast applications in RPP. However, these ML-based tools primarily focus on features with respect to amino-acid-sequence, ruling out the influence of fermentation process conditions. The present study combines the features derived from fermentation process conditions with that from amino acid-sequence to construct an ML-based model that predicts the maximal protein yields and the corresponding fermentation conditions for the expression of target recombinant protein in the Escherichia coli periplasm. Two sets of XGBoost classifiers were employed in the first stage to classify the expression levels of the target protein as high (>50 mg/L), medium (between 0.5 and 50 mg/L), or low (<0.5 mg/L). The second-stage framework consisted of three regression models involving support vector machines and random forest to predict the expression yields corresponding to each expression-level-class. Independent tests showed that the predictor achieved an overall average accuracy of 75% and a Pearson coefficient correlation of 0.91 for the correctly classified instances. Therefore, our model offers a reliable substitution of numerous trial-and-error experiments to identify the optimal fermentation conditions and yield for RPP. It is also implemented as an open-access webserver, PERISCOPE-Opt (http://periscope-opt.erc.monash.edu).

6.
Appl Microbiol Biotechnol ; 106(12): 4523-4537, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35713659

RESUMO

Sequence-based screening has been widely applied in the discovery of novel microbial enzymes. However, majority of the sequences in the genomic databases were annotated using computational approaches and lacks experimental characterization. Hence, the success in obtaining the functional biocatalysts with improved characteristics requires an efficient screening method that considers a wide array of factors. Recombinant expression of microbial enzymes is often hampered by the undesirable formation of inclusion body. Here, we present a systematic in silico screening method to identify the proteins expressible in soluble form and with the desired biological properties. The screening approach was adopted in the recombinant expression of dimethyl sulfide (DMS) monooxygenase in Escherichia coli. DMS monooxygenase, a two-component enzyme consisting of DmoA and DmoB subunits, was used as a model protein. The success rate of producing soluble and active DmoA is 71% (5 out of 7 genes). Interestingly, the soluble recombinant DmoA enzymes exhibited the NADH:FMN oxidoreductase activity in the absence of DmoB (second subunit), and the cofactor FMN, suggesting that DmoA is also an oxidoreductase. DmoA originated from Janthinobacterium sp. AD80 showed the maximum NADH oxidation activity (maximum reaction rate: 6.6 µM/min; specific activity: 133 µM/min/mg). This novel finding may allow DmoA to be used as an oxidoreductase biocatalyst for various industrial applications. The in silico gene screening methodology established from this study can increase the success rate of producing soluble and functional enzymes while avoiding the laborious trial and error involved in the screening of a large pool of genes available. KEY POINTS: • A systematic gene screening method was demonstrated. • DmoA is also an oxidoreductase capable of oxidizing NADH and reducing FMN. • DmoA oxidizes NADH in the absence of external FMN.


Assuntos
Escherichia coli , Oxigenases de Função Mista , Escherichia coli/genética , Escherichia coli/metabolismo , Mononucleotídeo de Flavina/metabolismo , Oxigenases de Função Mista/metabolismo , NAD/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Sulfetos
7.
Talanta ; 249: 123659, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35728452

RESUMO

Quartz crystal microbalance (QCM)-based biosensors are highly attractive as rapid diagnostic devices for detecting infectious diseases. However, the fabrication of QCM-based biosensors often involves tedious processes due to the poor stability of the biological recognition elements. In this work, the simple self-polymerisation of dopamine was used to functionalise the QCM crystal surface with a molecularly imprinted polydopamine (MIPDA) sensing film for detecting the hepatitis B core antigen (HBcAg), a serological biomarker of hepatitis B. Recognition cavities that complemented the size and shape of HBcAg were observed on the QCM crystal surface after functionalisation with the MIPDA film. The MIPDA-QCM biosensor showed a selective affinity for HBcAg, recording frequency responses up to 7.8 folds larger towards HBcAg compared to human serum albumin at the same analyte concentrations. The biosensor response was enhanced by using the optimal concentrations of 10 mg mL-1 of dopamine and 1 mg mL-1 of template for MIPDA film formation, resulting in a low detection limit (0.88 µg mL-1) that enables the detection of clinically relevant titres of HBcAg. The detection process could be completed within 10 min after sample loading without additional steps for signal amplification, highlighting the practical advantages of the MIPDA-QCM biosensor for point-of-care detection of hepatitis B.


Assuntos
Técnicas Biossensoriais , Hepatite B , Impressão Molecular , Técnicas Biossensoriais/métodos , Dopamina , Hepatite B/diagnóstico , Antígenos da Hepatite B , Antígenos do Núcleo do Vírus da Hepatite B , Humanos , Indóis , Impressão Molecular/métodos , Polímeros , Quartzo , Técnicas de Microbalança de Cristal de Quartzo
8.
J Control Release ; 345: 231-274, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35306119

RESUMO

Despite its wide establishment over the years, iron oxide nanoparticle (IONP) still draws extensive interest in the biomedical fields due to its biocompatibility, biodegradability, magnetivity and surface tunable properties. IONP has been used for the MRI, magnetic targeting, drug delivery and hyperthermia of various diseases. However, their poor stability, low diagnostic sensitivity and low disease-specificity have resulted in unsatisfying diagnostic and therapeutic outputs. The surface functionalization of IONP with biocompatible and colloidally stable components appears to be promising to improve its circulation and colloidal stability. Importantly, through surface functionalization with designated functional components, IONP-based assemblies with multiple stimuli-responsivity could be formed to achieve an accurate and efficient delivery of IONP to disease sites for an improved disease diagnosis and therapy. In this work, we first described the design of biocompatible and stable IONP assemblies. Further, their stimuli-driven manipulation strategies are reviewed. Next, the utilization of IONP assemblies for disease diagnosis, therapy and imaging-guided therapy are discussed. Then, the potential toxicity of IONPs and their clinical usages are described. Finally, the intrinsic challenges and future outlooks of IONP assemblies are commented. This review provides recent insights into IONP assemblies, which could inspire researchers on the future development of multi-responsive and disease-targetable nanoassemblies for biomedical utilization.


Assuntos
Compostos Férricos , Hipertermia Induzida , Sistemas de Liberação de Medicamentos , Compostos Férricos/uso terapêutico , Nanopartículas Magnéticas de Óxido de Ferro , Magnetismo
9.
Ultrason Sonochem ; 82: 105887, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34954629

RESUMO

Ultrasound (US) demonstrates remarkable potential in synthesising nanomaterials, particularly nanobiomaterials targeted towards biomedical applications. This review briefly introduces existing top-down and bottom-up approaches for nanomaterials synthesis and their corresponding synthesis mechanisms, followed by the expounding of US-driven nanomaterials synthesis. Subsequently, the pros and cons of sono-nanotechnology and its advances in the synthesis of nanobiomaterials are drawn based on recent works. US-synthesised nanobiomaterials have improved properties and performance over conventional synthesis methods and most essentially eliminate the need for harsh and expensive chemicals. The sonoproduction of different classes and types of nanobiomaterials such as metal and superparamagnetic nanoparticles (NPs), lipid- and carbohydrate-based NPs, protein microspheres, microgels and other nanocomposites are broadly categorised based on the physical and/or chemical effects induced by US. This review ends on a good note and recognises US-driven synthesis as a pragmatic solution to satisfy the growing demand for nanobiomaterials, nonetheless some technical challenges are highlighted.


Assuntos
Nanocompostos , Nanopartículas , Materiais Biocompatíveis , Metais , Nanotecnologia
10.
Carbohydr Res ; 504: 108336, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33964507

RESUMO

The development of hybrid polysaccharide-protein complexes as Pickering emulsion stabilizers has attracted increasing research interest in recent years. This work presents an eco-friendly surface modification strategy to functionalize hydrophilic cellulose nanocrystals (CNC) using hydrophobic soy protein isolate (SPI) via mussel adhesive-inspired poly (l-dopa) (PLD) to develop improved nanoconjugates as stabilizers for oil-in-water Pickering emulsion. The physicochemical properties of the CNC-PLD-SPI nanoconjugate were evaluated by solid-state 13C NMR, FT-IR, TGA, XRD, contact angle analysis, and TEM. The modified CNC (conjugation content of 38.22 ± 1.21%) had lowered crystallinity index, higher thermal stability, and more hydrophobic than unmodified CNC, with an average particle size of 309.9 ± 8.0 nm. Use of amphiphilic CNC-PLD-SPI nanoconjugate with greater conformational flexibility as Pickering stabilizer produced oil-in-water emulsions with greater physical stability.


Assuntos
Celulose , Emulsões , Nanoconjugados , Proteínas de Soja
11.
J Sci Food Agric ; 101(14): 5963-5971, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33840091

RESUMO

BACKGROUND: Throughout the past decade, Pickering emulsion has been increasingly utilized for the encapsulation of bioactive compounds due to its high stability and biocompatibility. In the present work, palm tocotrienols were initially encapsulated in a calcium carbonate Pickering emulsion, which was then subjected to alginate gelation and subsequent chitosan coating. The effects of wall material (alginate and chitosan) concentrations, gelation pH and time, and chitosan coating time on the encapsulation efficiency of palm tocotrienols were explored. RESULTS: Our findings revealed that uncoated alginate microcapsules ruptured upon drying and exhibited low encapsulation efficiency (13.81 ± 2.76%). However, the addition of chitosan successfully provided a more complex and rigid external wall structure to enhance the stability of the microcapsules. By prolonging the crosslinking time from 5 to 30 min and increasing the chitosan concentration from 0.1% to 0.5%, the oil encapsulation efficiency was increased by 28%. Under the right gelation pH (pH 4), the extension of gelation time from 1 to 12 h resulted in an increase in alginate-Ca2+ crosslinkings, thus strengthening the microcapsules. CONCLUSION: With the optimum formulation and process parameters, a high encapsulation efficiency (81.49 ± 1.75%) with an elevated oil loading efficiency (63.58 ± 2.96%) were achieved. The final product is biocompatible and can potentially be used for the delivery of palm tocotrienols. © 2021 Society of Chemical Industry.


Assuntos
Alginatos/química , Quitosana/química , Composição de Medicamentos/métodos , Tocotrienóis/química , Cápsulas/química , Composição de Medicamentos/instrumentação , Emulsões/química , Géis/química , Concentração de Íons de Hidrogênio
12.
Foods ; 10(2)2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33562391

RESUMO

Calcium carbonate (CaCO3) has been utilized as a pH-responsive component in various products. In this present work, palm tocotrienols-rich fraction (TRF) was successfully entrapped in a self-assembled oil-in-water (O/W) emulsion system by using CaCO3 as the stabilizer. The emulsion droplet size, viscosity and tocotrienols entrapment efficiency (EE) were strongly affected by varying the processing (homogenization speed and time) and formulation (CaCO3 and TRF concentrations) parameters. Our findings indicated that the combination of 5000 rpm homogenization speed, 15 min homogenization time, 0.75% CaCO3 concentration and 2% TRF concentration resulted in a high EE of tocotrienols (92.59-99.16%) and small droplet size (18.83 ± 1.36 µm). The resulting emulsion system readily released the entrapped tocotrienols across the pH range tested (pH 1-9); with relatively the highest release observed at pH 3. The current study presents a potential pH-sensitive emulsion system for the entrapment and delivery of palm tocotrienols.

13.
Carbohydr Polym ; 251: 117110, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33142647

RESUMO

The commercial application of liquid-state Pickering emulsions in food systems remains a major challenge. In this study, we developed a spray-dried Pickering emulsion powder using chitosan as a Pickering emulsifier and alginate as a coating material. The functionality of the powder was evaluated in terms of its oxidative stability, pH-responsiveness, mucoadhesivity, and lipid digestibility. The Pickering emulsion powder was oxidatively more stable than the conventional emulsion powder stabilized by gum Arabic. The powder exhibited pH-responsiveness, whereby it remained intact in acidic pH, but dissolved to release the emulsion in 'Pickering form' at near-neutral pH. The Pickering emulsion powder was also mucoadhesive and could be digested by lipase in a controlled manner. These findings suggested that the multi-functional Pickering emulsion powder could be a potential delivery system for applications in the food industry.


Assuntos
Alginatos/química , Quitosana/química , Emulsificantes/química , Liberação Controlada de Fármacos , Emulsões/química , Indústria Alimentícia , Concentração de Íons de Hidrogênio , Técnicas In Vitro , Oxirredução , Tamanho da Partícula
14.
Int J Biol Macromol ; 164: 4455-4465, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32937154

RESUMO

A stirred fluidized bed (SFB) ion exchange chromatography was successfully applied in the direct recovery of recombinant enhanced green fluorescent protein (EGFP) from the unclarified Escherichia coli homogenate. Optimal conditions for both adsorption and elution processes were determined from the packed-bed adsorption systems conducted at a small scale using the clarified cell homogenate. The maximal adsorption capacity and dissociation constant for EGFP-adsorbent complex were found to be 6.3 mg/mL and 1.3 × 10-3 mg/mL, respectively. In an optimal elution of EGFP with 0.2 M of NaCl solution (pH 9) and at 200 cm/h, the recovery percent of the EGFP was approximately 93%. The performances of SFB chromatography for direct recovery of EGFP was also evaluated under different loading volumes (50-200 mL) of crude cell homogenate. The single-step purification of EGFP by SFB recorded in a high yield (95-98%) and a satisfactory purification factor (~3 folds) of EGFP from the cell homogenate at 200 rpm of rotating speed.


Assuntos
Cromatografia por Troca Iônica/métodos , Escherichia coli/química , Proteínas de Fluorescência Verde/isolamento & purificação , Proteínas Recombinantes/isolamento & purificação , Adsorção , Cromatografia por Troca Iônica/instrumentação , Desenho de Equipamento , Etanolaminas
15.
Biosens Bioelectron ; 168: 112513, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32889395

RESUMO

Infectious diseases are the ever-present threats to public health and the global economy. Accurate and timely diagnosis is crucial to impede the progression of a disease and break the chain of transmission. Conventional diagnostic techniques are typically time-consuming and costly, making them inefficient for early diagnosis of infections and inconvenient for use at the point of care. Developments of sensitive, rapid, and affordable diagnostic methods are necessary to improve the clinical management of infectious diseases. Quartz crystal microbalance (QCM) systems have emerged as a robust biosensing platform due to their label-free mechanism, which allows the detection and quantification of a wide range of biomolecules. The high sensitivity and short detection time offered by QCM-based biosensors are attractive for the early detection of infections and the routine monitoring of disease progression. Herein, the strategies employed in QCM-based biosensors for the detection of infectious diseases are extensively reviewed, with a focus on prevalent diseases for which improved diagnostic techniques are in high demand. The challenges to the clinical application of QCM-based biosensors are highlighted, along with an outline of the future scope of research in QCM-based diagnostics.


Assuntos
Técnicas Biossensoriais , Doenças Transmissíveis , Doenças Transmissíveis/diagnóstico , Humanos , Sistemas Automatizados de Assistência Junto ao Leito , Técnicas de Microbalança de Cristal de Quartzo
16.
J Control Release ; 324: 69-103, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32423874

RESUMO

The recent designs of dynamic nanoassemblies exploiting the tumor-targeting properties have received increasing attention for tumor imaging and therapy due to their tumor-specific delivery and enhanced antitumor efficacy. However, these designs are mainly focused on the macroscopic tumor therapeutic effect, while the nano-bio interactions in the tumor microenvironment (TME) remain poorly understood. This review aims to provide an overview of the development of tumor-responsive nanoassemblies towards the imaging, therapy and TME modulation in the tumor site. The tumor biology leading to TME formation and the potential TME properties for the practicable design of tumor-targeting nanoassemblies has been outlined. Furthermore, the various approaches for TME modification and the realization via dynamic nanoassemblies for enhanced tumor therapy were reviewed. Lastly, the prospects of these methods were briefly discussed. These strategies may inspire the development of new combinational cancer therapeutics.


Assuntos
Neoplasias , Humanos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Microambiente Tumoral
17.
Appl Microbiol Biotechnol ; 104(8): 3253-3266, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32076772

RESUMO

Over the past few decades, Escherichia coli (E. coli) remains the most favorable host among the microbial cell factories for the production of soluble recombinant proteins. Recombinant protein production (RPP) via E. coli is optimized at the level of gene expression (expression level) and the process condition of fermentation (process level). Presently, the reported studies do not give a clear view on the selection of methods employed in the optimization of RPP. Here, we have reviewed various optimization methods and their preferences with respect to the factors at expression and process levels to achieve the optimal levels of soluble RPP. With a greater understanding of these optimization methods, we proposed a stepwise methodology linking the factors from both levels for optimizing the production of soluble recombinant protein in E. coli. The proposed methodology is further explained through five sets of examples demonstrating the optimization of RPP at both expression and process levels.Key Points• Stepwise methodology of optimizing recombinant protein production is proposed.• In silico tools can facilitate the optimization of gene- and protein-based factors.• Optimization of gene- and protein-based factors aids host-vector selection.• Statistical optimization is preferred for achieving optimal levels of process factors.


Assuntos
Biologia Computacional/métodos , Escherichia coli/genética , Fermentação , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Simulação por Computador , Meios de Cultura , Escherichia coli/metabolismo , Expressão Gênica
18.
Adv Colloid Interface Sci ; 277: 102117, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32035999

RESUMO

Recently, there have been increasing demand for the application of Pickering emulsions in various industries due to its combined advantage in terms of cost, quality and sustainability. This review aims to provide a complete overview of the available methodology for the physical characterization of emulsions that are stabilized by solid particles (known as Pickering emulsion). Current approaches and techniques for the analysis of the formation and properties of the Pickering emulsion were outlined along with the expected results of these methods on the emulsions. Besides, the application of modelling techniques has also been elaborated for the effective characterization of Pickering emulsions. Additionally, approaches to assess the stability of Pickering emulsions against physical deformation such as coalescence and gravitational separation were reviewed. Potential future developments of these characterization techniques were also briefly discussed. This review can act as a guide to researchers to better understand the standard procedures of Pickering emulsion assessment and the advanced methods available to date to study these emulsions, down to the minute details.

19.
Int J Biol Macromol ; 134: 458-468, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31078593

RESUMO

Nanofiber membrane chromatography integrates liquid membrane chromatography and nanofiber filtration into a single-step purification process. Nanofiber membrane can be functionalised with affinity ligands for promoting binding specificity of membrane. Dye molecules are a good affinity ligand for nanofiber membrane due to their low cost and high binding affinity. In this study, a dye-affinity nanofiber membrane (P-Chitosan-Dye membrane) was prepared by using polyacrylonitrile nanofiber membrane modified with chitosan molecules and immobilized with dye molecules. Reactive Orange 4, commercially known as Procion Orange MX2R, was found to be the best dye ligand for membrane chromatography. The binding capacity of P-Chitosan-Dye membrane for lysozyme was investigated under different operating conditions in batch mode. Furthermore, desorption of lysozyme using the P-Chitosan-Dye membrane was evaluated systematically. The recovery percentage of lysozyme was found to be ~100%. The optimal conditions obtained from batch-mode study were adopted to develop a purification process to separate lysozyme from chicken egg white. The process was operated continuously using the membrane chromatography and the characteristic of the breakthrough curve was evaluated. At a lower flow rate (i.e., 0.1 mL/min), the total recovery of lysozyme and purification factor of lysozyme were 98.59% and 56.89 folds, respectively.


Assuntos
Compostos Azo/química , Corantes/química , Clara de Ovo/química , Membranas Artificiais , Muramidase/isolamento & purificação , Nanofibras , Ésteres do Ácido Sulfúrico/química , Resinas Acrílicas/química , Animais , Fenômenos Químicos , Galinhas , Quitosana/química , Ativação Enzimática , Muramidase/química , Nanofibras/química , Termogravimetria
20.
Int J Biol Macromol ; 127: 76-84, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30639596

RESUMO

Stimuli-responsive drug release and controlled delivery play crucial roles in enhancing the therapeutic efficacy and lowering over-dosage induced side effects. In this paper, we report magnetically-triggered drug release and in-vitro anti-colon cancer efficacy of Fe3O4@cellulose nanocrystal (MCNC)-stabilized Pickering emulsions containing curcumin (CUR). The loading efficiency of CUR in the micron-sized (≈7 µm) MCNC-stabilized Pickering emulsions (MCNC-PE) template was found to be 99.35%. The drug release profiles showed that the exposure of MCNC-PE to external magnetic field (EMF) (0.7 T) stimulated the release of bioactive from MCNC-PE achieving 53.30 ±â€¯5.08% of the initial loading over a 4-day period. The MTT assay demonstrated that the CUR-loaded MCNC-PE can effectively inhibits the human colon cancer cells growth down to 18% in the presence of EMF. The formulation also resulted in 2-fold reduction on the volume of the 3-D multicellular spheroids of HCT116 as compared to the control sample. The MCNC particle was found to be non-toxic to brine shrimp up to a concentration of 100 µg/mL. Our findings suggested that the palm-based MCNC-PE could be a promising yet effective colloidal drug delivery system for magnetic-triggered release of bioactive and therapeutics.


Assuntos
Celulose , Neoplasias do Colo , Curcumina , Portadores de Fármacos , Nanopartículas de Magnetita , Nanopartículas , Celulose/química , Celulose/farmacocinética , Celulose/farmacologia , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Curcumina/química , Curcumina/farmacocinética , Curcumina/farmacologia , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Emulsões , Células HCT116 , Humanos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/uso terapêutico , Nanopartículas/química , Nanopartículas/uso terapêutico , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...